Get started with ORT for C#
Contents
- Install the Nuget Packages with the .NET CLI
- Import the libraries
- Create method for inference
- Reuse input/output tensor buffers
- Running on GPU (Optional)
- Supported Versions
- Builds
- API Reference
- Samples
- Learn More
Install the Nuget Packages with the .NET CLI
dotnet add package Microsoft.ML.OnnxRuntime --version 1.2.0
dotnet add package System.Numerics.Tensors --version 0.1.0
Import the libraries
using Microsoft.ML.OnnxRuntime;
using System.Numerics.Tensors;
Create method for inference
This is an Azure Function example that uses ORT with C# for inference on an NLP model created with SciKit Learn.
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)] HttpRequest req,
ILogger log, ExecutionContext context)
{
log.LogInformation("C# HTTP trigger function processed a request.");
string review = req.Query["review"];
string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
review = review ?? data?.review;
// Get path to model to create inference session.
var modelPath = "./model.onnx";
// create input tensor (nlp example)
var inputTensor = new DenseTensor<string>(new string[] { review }, new int[] { 1, 1 });
// Create input data for session.
var input = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor<string>("input", inputTensor) };
// Create an InferenceSession from the Model Path.
var session = new InferenceSession(modelPath);
// Run session and send input data in to get inference output. Call ToList then get the Last item. Then use the AsEnumerable extension method to return the Value result as an Enumerable of NamedOnnxValue.
var output = session.Run(input).ToList().Last().AsEnumerable<NamedOnnxValue>();
// From the Enumerable output create the inferenceResult by getting the First value and using the AsDictionary extension method of the NamedOnnxValue.
var inferenceResult = output.First().AsDictionary<string, float>();
// Return the inference result as json.
return new JsonResult(inferenceResult);
}
Reuse input/output tensor buffers
In some scenarios, you may want to reuse input/output tensors. This often happens when you want to chain 2 models (ie. feed one’s output as input to another), or want to accelerate inference speed during multiple inference runs.
Chaining: Feed model A’s output(s) as input(s) to model B
InferenceSession session1, session2; // let's say 2 sessions are initialized
Tensor<long> input = new DenseTensor<long>(new[] { 1, inputDimension }); // let's say data is fed into the Tensor objects
var inputs1 = new List<NamedOnnxValue>()
{
NamedOnnxValue.CreateFromTensor("name1", input)
};
// session1 inference
using (var outputs1 = session1.Run(inputs1))
{
// get intermediate value
var input2 = outputs1.First();
// modify the name of the ONNX value
input2.Name = "name2";
// create input list for session2
var inputs2 = new List<NamedOnnxValue>() { input2 };
// session2 inference
using (var results = session2.Run(inputs2))
{
// manipulate the results
}
}
Multiple inference runs with fixed sized input(s) and output(s)
If the model have fixed sized inputs and outputs of numeric tensors, you can use “FixedBufferOnnxValue” to accelerate the inference speed. By using “FixedBufferOnnxValue”, the container objects only need to be allocated/disposed one time during multiple InferenceSession.Run() calls. This avoids some overhead which may be beneficial for smaller models where the time is noticeable in the overall running time.
Running on GPU (Optional)
If using the GPU package, simply use the appropriate SessionOptions when creating an InferenceSession.
int gpuDeviceId = 0; // The GPU device ID to execute on
var session = new InferenceSession("model.onnx", SessionOptions.MakeSessionOptionWithCudaProvider(gpuDeviceId));
ONNX Runtime C# API
The ONNX runtime provides a C# .NET binding for running inference on ONNX models in any of the .NET standard platforms.
Supported Versions
.NET standard 1.1
Builds
Artifact | Description | Supported Platforms |
---|---|---|
Microsoft.ML.OnnxRuntime | CPU (Release) | Windows, Linux, Mac, X64, X86 (Windows-only), ARM64 (Windows-only)…more details: compatibility |
Microsoft.ML.OnnxRuntime.Gpu | GPU - CUDA (Release) | Windows, Linux, Mac, X64…more details: compatibility |
Microsoft.ML.OnnxRuntime.DirectML | GPU - DirectML (Release) | Windows 10 1709+ |
ort-nightly | CPU, GPU (Dev), CPU (On-Device Training) | Same as Release versions |
Microsoft.ML.OnnxRuntime.Training | CPU On-Device Training (Release) | Windows, Linux, Mac, X64, X86 (Windows-only), ARM64 (Windows-only)…more details: compatibility |